Greater seasonal cycling of 25-hydroxyvitamin D is associated with increased parathyroid hormone and bone resorption.

Autor: Darling AL; Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK, a.darling@surrey.ac.uk., Hart KH, Gibbs MA, Gossiel F, Kantermann T, Horton K, Johnsen S, Berry JL, Skene DJ, Eastell R, Vieth R, Lanham-New SA
Jazyk: angličtina
Zdroj: Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA [Osteoporos Int] 2014 Mar; Vol. 25 (3), pp. 933-41. Date of Electronic Publication: 2013 Aug 28.
DOI: 10.1007/s00198-013-2493-4
Abstrakt: Summary: This analysis assessed whether seasonal change in 25-hydroxyvitamin D concentration was associated with bone resorption, as evidenced by serum parathyroid hormone and C-terminal telopeptide concentrations. The main finding was that increased seasonal fluctuation in 25-hydroxyvitamin D was associated with increased levels of parathyroid hormone and C-terminal telopeptide.
Introduction: It is established that adequate 25-hydroxyvitamin D (25(OH)D, vitamin D) concentration is required for healthy bone mineralisation. It is unknown whether seasonal fluctuations in 25(OH)D also impact on bone health. If large seasonal fluctuations in 25(OH)D were associated with increased bone resorption, this would suggest a detriment to bone health. Therefore, this analysis assessed whether there is an association between seasonal variation in 25(OH)D and bone resorption.
Methods: The participants were (n = 279) Caucasian and (n = 88) South Asian women (mean (±SD); age 48.2 years (14.4)) who participated in the longitudinal Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England study (2006-2007). The main outcomes were serum 25(OH)D, serum parathyroid hormone (sPTH) and serum C-terminal telopeptide of collagen (sCTX), sampled once per season for each participant.
Results: Non-linear mixed modelling showed the (amplitude/mesor) ratio for seasonal change in log 25(OH)D to be predictive of log sPTH (estimate = 0.057, 95 % CI (0.051, 0.063), p < 0.0001). Therefore, individuals with a higher seasonal change in log 25(OH)D, adjusted for overall log 25(OH)D concentration, showed increased levels of log sPTH. There was a corresponding significant ability to predict the range of seasonal change in log 25(OH)D through the level of sCTX. Here, the corresponding parameter statistics were estimate = 0.528, 95 % CI (0.418, 0.638) and p ≤ 0.0001.
Conclusions: These findings suggest a possible detriment to bone health via increased levels of sPTH and sCTX in individuals with a larger seasonal change in 25(OH)D concentration. Further larger cohort studies are required to further investigate these preliminary findings.
Databáze: MEDLINE