Autor: |
Meredith DM; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA., Borromeo MD, Deering TG, Casey BH, Savage TK, Mayer PR, Hoang C, Tung KC, Kumar M, Shen C, Swift GH, Macdonald RJ, Johnson JE |
Jazyk: |
angličtina |
Zdroj: |
Molecular and cellular biology [Mol Cell Biol] 2013 Aug; Vol. 33 (16), pp. 3166-79. Date of Electronic Publication: 2013 Jun 10. |
DOI: |
10.1128/MCB.00364-13 |
Abstrakt: |
The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. |
Databáze: |
MEDLINE |
Externí odkaz: |
|