Autor: |
Belknap R; Denver Public Health, Denver Health and Hospital Authority, Denver, Colorado, United States of America. robert.belknap@dhha.org, Weis S, Brookens A, Au-Yeung KY, Moon G, DiCarlo L, Reves R |
Jazyk: |
angličtina |
Zdroj: |
PloS one [PLoS One] 2013; Vol. 8 (1), pp. e53373. Date of Electronic Publication: 2013 Jan 07. |
DOI: |
10.1371/journal.pone.0053373 |
Abstrakt: |
Poor adherence to tuberculosis (TB) treatment hinders the individual's recovery and threatens public health. Currently, directly observed therapy (DOT) is the standard of care; however, high sustaining costs limit its availability, creating a need for more practical adherence confirmation methods. Techniques such as video monitoring and devices to time-register the opening of pill bottles are unable to confirm actual medication ingestions. A novel approach developed by Proteus Digital Health, Inc. consists of an ingestible sensor and an on-body wearable sensor; together, they electronically confirm unique ingestions and record the date/time of the ingestion. A feasibility study using an early prototype was conducted in active TB patients to determine the system's accuracy and safety in confirming co-ingestion of TB medications with sensors. Thirty patients completed 10 DOT visits and 1,080 co-ingestion events; the system showed 95.0% (95% CI 93.5-96.2%) positive detection accuracy, defined as the number of detected sensors divided by the number of transmission capable sensors administered. The specificity was 99.7% [95% CI 99.2-99.9%] based on three false signals recorded by receivers. The system's identification accuracy, defined as the number of correctly identified ingestible sensors divided by the number of sensors detected, was 100%. Of 11 adverse events, four were deemed related or possibly related to the device; three mild skin rashes and one complaint of nausea. The system's positive detection accuracy was not affected by the subjects' Body Mass Index (p = 0.7309). Study results suggest the system is capable of correctly identifying ingestible sensors with high accuracy, poses a low risk to users, and may have high patient acceptance. The system has the potential to confirm medication specific treatment compliance on a dose-by-dose basis. When coupled with mobile technology, the system could allow wirelessly observed therapy (WOT) for monitoring TB treatment as a replacement for DOT. |
Databáze: |
MEDLINE |
Externí odkaz: |
|