Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

Autor: Dagade DH; Department of Chemistry, Shivaji University, Kolhapur 416004, India. dilipdagade@yahoo.com, Madkar KR, Shinde SP, Barge SS
Jazyk: angličtina
Zdroj: The journal of physical chemistry. B [J Phys Chem B] 2013 Jan 31; Vol. 117 (4), pp. 1031-43. Date of Electronic Publication: 2013 Jan 15.
DOI: 10.1021/jp310924m
Abstrakt: Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb's free energy data and literature enthalpy data. This study highlights that the hydrophobic interaction persists even in the limit of infinite dilution where the hydration effects are usually dominant, implying importance of hydrophobic hydration. Analysis of the results further shows that the hydration of amino acid ionic liquids occurs through the cooperative H-bond formation with the kosmotropic effect in contrast to the usual inorganic salts or hydrophobic salts like tetraalkylammonium halides.
Databáze: MEDLINE