Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative.

Autor: Bleeker PM; Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands., Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC
Jazyk: angličtina
Zdroj: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2012 Dec 04; Vol. 109 (49), pp. 20124-9. Date of Electronic Publication: 2012 Nov 19.
DOI: 10.1073/pnas.1208756109
Abstrakt: Tomato breeding has been tremendously efficient in increasing fruit quality and quantity but did not focus on improving herbivore resistance. The biosynthetic pathway for the production of 7-epizingiberene in a wild tomato was introduced into a cultivated greenhouse variety with the aim to obtain herbivore resistance. 7-Epizingiberene is a specific sesquiterpene with toxic and repellent properties that is produced and stored in glandular trichomes. We identified 7-epizingiberene synthase (ShZIS) that belongs to a new class of sesquiterpene synthases, exclusively using Z-Z-farnesyl-diphosphate (zFPP) in plastids, probably arisen through neo-functionalization of a common ancestor. Expression of the ShZIS and zFPP synthases in the glandular trichomes of cultivated tomato resulted in the production of 7-epizingiberene. These tomatoes gained resistance to several herbivores that are pests of tomato. Hence, introduction of this sesquiterpene biosynthetic pathway into cultivated tomatoes resulted in improved herbivore resistance.
Databáze: MEDLINE