High yield, reproducible and quasi-automated bilayer formation in a microfluidic format.

Autor: Stimberg VC; BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands., Bomer JG, van Uitert I, van den Berg A, Le Gac S
Jazyk: angličtina
Zdroj: Small (Weinheim an der Bergstrasse, Germany) [Small] 2013 Apr 08; Vol. 9 (7), pp. 1076-85. Date of Electronic Publication: 2012 Nov 09.
DOI: 10.1002/smll.201201821
Abstrakt: A microfluidic platform is reported for various experimentation schemes on cell membrane models and membrane proteins using a combination of electrical and optical measurements, including confocal microscopy. Bilayer lipid membranes (BLMs) are prepared in the device upon spontaneous and instantaneous thinning of the lipid solution in a 100-μm dry-etched aperture in a 12.5-μm thick Teflon foil. Using this quasi-automated approach, a remarkable 100% membrane formation yield is reached (including reflushing in 4% of the cases), and BLMs are stable for up to 36 h. Furthermore, the potential of this platform is demonstrated for (i) the in-depth characterization of BLMs comprising both synthetic and natural lipids (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and L-α-phosphatidylcholine (L-α-PC)/cholesterol, respectively) in terms of seal resistance, capacitance, surface area, specific capacitance, and membrane hydrophobic thickness; (ii) confocal microscopy imaging of phase separation in sphingomyelin/L-α-PC/cholesterol ternary membranes; (iii) electrical measurements of individual nanopores (α-hemolysin, gramicidin); and (iv) indirect assessment of the alteration of membrane properties upon exposure to chemical stimuli using the natural nanopore gramicidin as a sensor.
(Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Databáze: MEDLINE