Autor: |
Danese E; Division of Internal Medicine C, Department of Medicine, University Hospital of Verona, Verona, Italy., Montagnana M, Johnson JA, Rettie AE, Zambon CF, Lubitz SA, Suarez-Kurtz G, Cavallari LH, Zhao L, Huang M, Nakamura Y, Mushiroda T, Kringen MK, Borgiani P, Ciccacci C, Au NT, Langaee T, Siguret V, Loriot MA, Sagreiya H, Altman RB, Shahin MH, Scott SA, Khalifa SI, Chowbay B, Suriapranata IM, Teichert M, Stricker BH, Taljaard M, Botton MR, Zhang JE, Pirmohamed M, Zhang X, Carlquist JF, Horne BD, Lee MT, Pengo V, Guidi GC, Minuz P, Fava C |
Jazyk: |
angličtina |
Zdroj: |
Clinical pharmacology and therapeutics [Clin Pharmacol Ther] 2012 Dec; Vol. 92 (6), pp. 746-56. Date of Electronic Publication: 2012 Nov 07. |
DOI: |
10.1038/clpt.2012.184 |
Abstrakt: |
A systematic review and a meta-analysis were performed to quantify the accumulated information from genetic association studies investigating the impact of the CYP4F2 rs2108622 (p.V433M) polymorphism on coumarin dose requirement. An additional aim was to explore the contribution of the CYP4F2 variant in comparison with, as well as after stratification for, the VKORC1 and CYP2C9 variants. Thirty studies involving 9,470 participants met prespecified inclusion criteria. As compared with CC-homozygotes, T-allele carriers required an 8.3% (95% confidence interval (CI): 5.6-11.1%; P < 0.0001) higher mean daily coumarin dose than CC homozygotes to reach a stable international normalized ratio (INR). There was no evidence of publication bias. Heterogeneity among studies was present (I(2) = 43%). Our results show that the CYP4F2 p.V433M polymorphism is associated with interindividual variability in response to coumarin drugs, but with a low effect size that is confirmed to be lower than those contributed by VKORC1 and CYP2C9 polymorphisms. |
Databáze: |
MEDLINE |
Externí odkaz: |
|