Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si.

Autor: Dharma-wardana MW; National Research Council of Canada, Ottawa, Canada K1A 0R6. chandre.dharma-wardana@nrc-cnrc.gc.ca
Jazyk: angličtina
Zdroj: Physical review. E, Statistical, nonlinear, and soft matter physics [Phys Rev E Stat Nonlin Soft Matter Phys] 2012 Sep; Vol. 86 (3 Pt 2), pp. 036407. Date of Electronic Publication: 2012 Sep 19.
DOI: 10.1103/PhysRevE.86.036407
Abstrakt: The pair interactions Uij(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., gij(r). Great simplicity is achieved if Uij(r) could be directly used to predict material properties via classical simulations, avoiding many-body wave functions. Warm dense matter (WDM) is encountered in quasiequilibria where the electron temperature Te differs from the ion temperature Ti, as in laser-heated or in shock-compressed matter. The electron PDFs gee(r) as perturbed by the ions are used to evaluate fully nonlocal exchange-correlation corrections to the free energy, using hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with Te≠Ti, and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive regions and then become repulsive and "Yukawa-like" for higher Te. These results clarify the origin of initial phonon hardening and rapid release. Pair potentials for shock-heated WDM show that phonon hardening would not occur in most such systems. Defining meaningful quasiequilibrium static transport coefficients consistent with the dynamic values is addressed. There seems to be no meaningful "static conductivity" obtainable by extrapolating experimental or theoretical σ(ω,Ti,Te) to ω→0, unless Ti→Te as well. Illustrative calculations of quasistatic resistivities R(Ti,Te) of laser-heated as well as shock-heated aluminum and silicon are presented using our pseudopotentials, pair potentials, and classical integral equations. The quasistatic resistivities display clear differences in their temperature evolutions, but are not the strict ω→0 limits of the dynamic values.
Databáze: MEDLINE