Exposure of rats to environmental tobacco smoke during cerebellar development alters behavior and perturbs mitochondrial energetics.
Autor: | Fuller BF; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA., Cortes DF, Landis MK, Yohannes H, Griffin HE, Stafflinger JE, Bowers MS, Lewis MH, Fox MA, Ottens AK |
---|---|
Jazyk: | angličtina |
Zdroj: | Environmental health perspectives [Environ Health Perspect] 2012 Dec; Vol. 120 (12), pp. 1684-91. Date of Electronic Publication: 2012 Sep 26. |
DOI: | 10.1289/ehp.1104857 |
Abstrakt: | Background: Environmental tobacco smoke (ETS) exposure is linked to developmental deficits and disorders with known cerebellar involvement. However, direct biological effects and underlying neurochemical mechanisms remain unclear. Objectives: We sought to identify and evaluate underlying neurochemical change in the rat cerebellum with ETS exposure during critical period development. Methods: We exposed rats to daily ETS (300, 100, and 0 µg/m3 total suspended particulate) from postnatal day 8 (PD8) to PD23 and then assayed the response at the behavioral, neuroproteomic, and cellular levels. Results: Postnatal ETS exposure induced heightened locomotor response in a novel environment on par initially with amphetamine stimulation. The cerebellar mitochondrial subproteome was significantly perturbed in the ETS-exposed rats. Findings revealed a dose-dependent up-regulation of aerobic processes through the modification and increased translocation of Hk1 to the mitochondrion with corresponding heightened ATP synthase expression. ETS exposure also induced a dose-dependent increase in total Dnm1l mitochondrial fission factor; although more active membrane-bound Dnm1l was found at the lower dose. Dnm1l activation was associated with greater mitochondrial staining, particularly in the molecular layer, which was independent of stress-induced Bcl-2 family dynamics. Further, electron microscopy associated Dnm1l-mediated mitochondrial fission with increased biogenesis, rather than fragmentation. Conclusions: The critical postnatal period of cerebellar development is vulnerable to the effects of ETS exposure, resulting in altered behavior. The biological effect of ETS is underlain in part by a Dnm1l-mediated mitochondrial energetic response at a time of normally tight control. These findings represent a novel mechanism by which environmental exposure can impact neurodevelopment and function. |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |