Autor: |
Naito M; Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA., Hainz U, Burkhardt UE, Fu B, Ahove D, Stevenson KE, Rajasagi M, Zhu B, Alonso A, Witten E, Matsuoka K, Neuberg D, Duke-Cohan JS, Wu CJ, Freeman GJ |
Jazyk: |
angličtina |
Zdroj: |
Cancer immunology, immunotherapy : CII [Cancer Immunol Immunother] 2013 Feb; Vol. 62 (2), pp. 347-57. Date of Electronic Publication: 2012 Aug 25. |
DOI: |
10.1007/s00262-012-1331-4 |
Abstrakt: |
CD40L has a well-established role in enhancing the immunostimulatory capacity of normal and malignant B cells, but a formulation suitable for clinical use has not been widely available. Like other TNF family members, in vivo and in vitro activity of CD40L requires a homotrimeric configuration, and growing evidence suggests that bioactivity depends on higher-order clustering of CD40. We generated a novel formulation of human recombinant CD40L (CD40L-Tri) in which the CD40L extracellular domain and a trimerization motif are connected by a long flexible peptide linker. We demonstrate that CD40L-Tri significantly expands normal CD19+ B cells by over 20- to 30-fold over 14 days and induces B cells to become highly immunostimulatory antigen-presenting cells (APCs). Consistent with these results, CD40L-Tri-activated B cells could effectively stimulate antigen-specific T responses (against the influenza M1 peptide) from normal volunteers. In addition, CD40L-Tri could induce malignant B cells to become effective APCs, such that tumor-directed immune responses could be probed. Together, our studies demonstrate the potent immune-stimulatory effects of CD40L-Tri on B cells that enable their expansion of antigen-specific human T cells. The potent bioactivity of CD40L-Tri is related to its ability to self-multimerize, which may be facilitated by its long peptide linker. |
Databáze: |
MEDLINE |
Externí odkaz: |
|