Rearranging exosites in noncatalytic domains can redirect the substrate specificity of ADAMTS proteases.

Autor: Gao W; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA., Zhu J, Westfield LA, Tuley EA, Anderson PJ, Sadler JE
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 2012 Aug 03; Vol. 287 (32), pp. 26944-52. Date of Electronic Publication: 2012 Jun 15.
DOI: 10.1074/jbc.M112.380535
Abstrakt: ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.
Databáze: MEDLINE