[Study of the interaction of myoglobin with lipid bilayer membranes by potentiodynamic method].

Autor: Grigor'ev PA, Postnikova GB, Shekhovtsova EA
Jazyk: ruština
Zdroj: Biofizika [Biofizika] 2012 Jan-Feb; Vol. 57 (1), pp. 68-74.
Abstrakt: For modeling the interaction of myoglobin with mitochondrial membranes, the adsorption of different ligand forms, the physiologically active reduced MbO2 and inactive oxidized met-Mb, on one of the surfaces of artificial bilayer lipid membrane (BLM) was studied using potentiodynamic technique known as the "capacity minimization" method. As mitochondrial membranes are negatively charged, BLM from the negatively charged palmitoyl-2-oleil-phosphatidyl glycerol (POPG) and neutral soybean phosphatidylcholine (lecithin) were used. It is shown that both myoglobins strongly interact with BLM in the pH range 6-8. The dependence of the potential difference between cis-and trans-surfaces of the lipid membrane (deltaE, mV) on the protein concentration is characteristic for the Langmuir adsorption isotherm, and the saturation level (deltaEmax, mV) corresponds to monolayer of myoglobin. The protein adsorption is essentially electrostatic in nature, as adsorption activity increases sharply in the case of the membrane from POPG: in a approximately 15-fold in the case of MbO2 and in a approximately 2.5 times for the met-Mb. The parameters of the MbO2 and met-Mb adsorption on BLM from lecithin and POPG do not change in the pH 6-8 range. It can be assumed that the anionic groups of phospholipids associate with the cationic groups of the protein, the charge state of those does not change in the pH 6-8 range. The most likely candidates for interaction with phospholipids of BLM are invariant lysines and arginines in the environment of the myoglobin heme cavity.
Databáze: MEDLINE