The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis.

Autor: Cumplido-Laso G; Departamento de Bioquímica y Biología Molecular. Edificio C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain., Medina-Puche L, Moyano E, Hoffmann T, Sinz Q, Ring L, Studart-Wittkowski C, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R
Jazyk: angličtina
Zdroj: Journal of experimental botany [J Exp Bot] 2012 Jun; Vol. 63 (11), pp. 4275-90. Date of Electronic Publication: 2012 May 04.
DOI: 10.1093/jxb/ers120
Abstrakt: Short-chain esters contribute to the blend of volatiles that define the strawberry aroma. The last step in their biosynthesis involves an alcohol acyltransferase that catalyses the esterification of an acyl moiety of acyl-CoA with an alcohol. This study identified a novel strawberry alcohol acyltransferase gene (FaAAT2) whose expression pattern during fruit receptacle growth and ripening is in accordance with the production of esters throughout strawberry fruit ripening. The full-length FaAAT2 cDNA was cloned and expressed in Escherichia coli and its activity was analysed with acyl-CoA and alcohol substrates. The semi-purified FaAAT2 enzyme had activity with C1-C8 straight-chain alcohols and aromatic alcohols in the presence of acetyl-CoA. Cinnamyl alcohol was the most efficient acyl acceptor. When FaAAT2 expression was transiently downregulated in the fruit receptacle by agroinfiltration, the volatile ester production was significantly reduced in strawberry fruit. The results suggest that FaAAT2 plays a significant role in the production of esters that contribute to the final strawberry fruit flavour.
Databáze: MEDLINE