Interaction between biimidazole complexes of ruthenium and acetate: hydrogen bonding and proton transfer.

Autor: Mo HJ; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China., Wu JJ, Qiao ZP, Ye BH
Jazyk: angličtina
Zdroj: Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2012 Jun 21; Vol. 41 (23), pp. 7026-36. Date of Electronic Publication: 2012 May 02.
DOI: 10.1039/c2dt30225j
Abstrakt: The hydrogen bonding and deprotonation processes between four ruthenium biimidazole complexes, namely [Ru(bpy)(2)(BiimH(2))](PF(6))(2) (1, bpy is bipyridine, BiimH(2) is 2,2'-biimidazole), [Ru(bpy)(2)-(BbimH(2))](PF(6))(2) (2, BbimH(2) is 2,2'-bibenzimidazole), and [Ru(bpy)(2)(DMBbimH(2))](PF(6))(2) (3, DMBbimH(2) is 7,7'-dimethyl-2,2'-bibenzimidazole) and [Ru(bpy)(2)(TMBbimH(2))](2+) (4, TMBbimH(2) is 5,6,5',6'-tetramethyl-2,2'-bibenzimidazole), and acetate are investigated. Their hydrogen bonded adducts are indeed trapped and observed by absorption spectra and electrochemical experiments in acetonitrile solution in the presence of an excess of acetic acid for the first time. The binding constants log K(B) for these adducts are 6.74 for 1·OAc, 7.11 for 2·OAc, 7.26 for 3·OAc, and 6.99 for 4·OAc. A new approach to calculate the deprotonation constant is also developed by establishing a set of circular equilibria. The equilibrium constants for the first deprotonation step of the complexes log K(A) are 2.74 for 1, 5.19 for 2, 4.54 for 3, and 3.78 for 4. The pK(a1) values of the complexes in acetonitrile solution are calculated by subtracting log K(A) from pK(a) (HOAc in acetonitrile), giving 19.6 for 1, 17.1 for 2, 17.8 for 3, and 18.5 for 4. The degree of proton transfer (D(PT)) can be quantified by the calculation of absorption spectral and redox data, which is 0.41 for 1·OAc, 0.53 for 2·OAc, 0.57 for 3·OAc, and 0.47 for 4·OAc. Interestingly, the binding constant log K(B) (7.26) and D(PT) value (0.57) both reach their maxima at a critical point, where pK(a1) for the complex is 17.8 and ΔpK(a) for the adduct is 4.5 (ΔpK(a) = pK(a)(HOAc) - pK(a1), in acetonitrile solution). Moreover, the binding constant log K(B) shows linear correlation with the degree of proton transfer D(PT).
Databáze: MEDLINE