Tuning multi/pluri-potent stem cell fate by electrospun poly(L-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats.

Autor: D'Angelo F; Department of Experimental Medicine and Biochemical Sciences, Section of Biochemistry and Molecular Biology, University of Perugia, Via del Giochetto, Perugia, Italy., Armentano I, Cacciotti I, Tiribuzi R, Quattrocelli M, Del Gaudio C, Fortunati E, Saino E, Caraffa A, Cerulli GG, Visai L, Kenny JM, Sampaolesi M, Bianco A, Martino S, Orlacchio A
Jazyk: angličtina
Zdroj: Biomacromolecules [Biomacromolecules] 2012 May 14; Vol. 13 (5), pp. 1350-60. Date of Electronic Publication: 2012 Apr 12.
DOI: 10.1021/bm3000716
Abstrakt: In this study, we investigated whether multipotent (human-bone-marrow-derived mesenchymal stem cells [hBM-MSCs]) and pluripotent stem cells (murine-induced pluripotent stem cells [iPSCs] and murine embryonic stem cells [ESCs]) respond to nanocomposite fibrous mats of poly(L-lactic acid) (PLLA) loaded with 1 or 8 wt % of calcium-deficient nanohydroxyapatite (d-HAp). Remarkably, the dispersion of different amounts of d-HAp to PLLA produced a set of materials (PLLA/d-HAp) with similar architectures and tunable mechanical properties. After 3 weeks of culture in the absence of soluble osteogenic factors, we observed the expression of osteogenic markers, including the deposition of bone matrix proteins, in multi/pluripotent cells only grown on PLLA/d-HAp nanocomposites, whereas the osteogenic differentiation was absent on stem-cell-neat PLLA cultures. Interestingly, this phenomenon was confined only in hBM-MSCs, murine iPSCs, and ESCs grown on direct contact with the PLLA/d-HAp mats. Altogether, these results indicate that the osteogenic differentiation effect of these electrospun PLLA/d-HAp nanocomposites was independent of the stem cell type and highlight the direct interaction of stem cell-polymeric nanocomposite and the mechanical properties acquired by the PLLA/d-HAp nanocomposites as key steps for the differentiation process.
Databáze: MEDLINE