Is histidine dissociation a critical component of the NO/H-NOX signaling mechanism? Insights from X-ray absorption spectroscopy.

Autor: Dai Z; Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA., Farquhar ER, Arora DP, Boon EM
Jazyk: angličtina
Zdroj: Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2012 Jul 14; Vol. 41 (26), pp. 7984-93. Date of Electronic Publication: 2012 Mar 20.
DOI: 10.1039/c2dt30147d
Abstrakt: The H-NOX (Heme-Nitric oxide/OXygen binding) family of diatomic gas sensing hemoproteins has attracted great interest. Soluble guanylate cyclase (sGC), the well-characterized eukaryotic nitric oxide (NO) sensor is an H-NOX family member. When NO binds sGC at the ferrous histidine-ligated protoporphyrin-IX, the proximal histidine ligand dissociates, resulting in a 5-coordinate (5c) complex; formation of this 5c complex is viewed as necessary for activation of sGC. Characterization of other H-NOX family members has revealed that while most also bind NO in a 5c complex, some bind NO in a 6-coordinate (6c) complex or as a 5c/6c mixture. To gain insight into the heme pocket structural differences between 5c and 6c Fe(ii)-NO H-NOX complexes, we investigated the extended X-ray absorption fine structure (EXAFS) of the Fe(II)-unligated and Fe(II)-NO complexes of H-NOX domains from three species, Thermoanaerobacter tengcongensis, Shewanella woodyi, and Pseudoalteromonas atlantica. Although the Fe(II)-NO complex of TtH-NOX is formally 6c, we found the Fe-N(His) bond is substantially lengthened. Furthermore, although NO binds to SwH-NOX and PaH-NOX as a 5c complex, consistent with histidine dissociation, the EXAFS data do not exclude a very weakly associated histidine. Regardless of coordination number, upon NO-binding, the Fe-N(porphyrin) bond lengths in all three H-NOXs contract by ~0.07 Å. This study reveals that the overall heme structure of 5c and 6c Fe(II)-NO H-NOX complexes are substantially similar, suggesting that formal histidine dissociation may not be required to trigger NO/H-NOX signal transduction. The study has refined our understanding of the molecular mechanisms underlying NO/H-NOX signaling.
Databáze: MEDLINE