The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential.

Autor: Hara Y; Fermentation and Biotechnology Laboratories, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki, Japan., Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI
Jazyk: angličtina
Zdroj: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2012 Jan; Vol. 93 (1), pp. 331-41. Date of Electronic Publication: 2011 Dec 10.
DOI: 10.1007/s00253-011-3713-5
Abstrakt: Pantoea ananatis AJ13355 is a newly identified member of the Enterobacteriaceae family with promising biotechnological applications. This bacterium is able to grow at an acidic pH and is resistant to saturating concentrations of L-glutamic acid, making this organism a suitable host for the production of L-glutamate. In the current study, the complete genomic sequence of P. ananatis AJ13355 was determined. The genome was found to consist of a single circular chromosome consisting of 4,555,536 bp [DDBJ: AP012032] and a circular plasmid, pEA320, of 321,744 bp [DDBJ: AP012033]. After automated annotation, 4,071 protein-coding sequences were identified in the P. ananatis AJ13355 genome. For 4,025 of these genes, functions were assigned based on homologies to known proteins. A high level of nucleotide sequence identity (99%) was revealed between the genome of P. ananatis AJ13355 and the previously published genome of P. ananatis LMG 20103. Short colinear regions, which are identical to DNA sequences in the Escherichia coli MG1655 chromosome, were found to be widely dispersed along the P. ananatis AJ13355 genome. Conjugal gene transfer from E. coli to P. ananatis, mediated by homologous recombination between short identical sequences, was also experimentally demonstrated. The determination of the genome sequence has paved the way for the directed metabolic engineering of P. ananatis to produce biotechnologically relevant compounds.
Databáze: MEDLINE