Isolation, identification and removal of filamentous organism from SND based SBR degrading nitrophenols.

Autor: Kulkarni PM; Center for Environmental Science and Engineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India. pradnyakulkarni@iitb.ac.in
Jazyk: angličtina
Zdroj: Biodegradation [Biodegradation] 2012 Jun; Vol. 23 (3), pp. 455-63. Date of Electronic Publication: 2011 Nov 27.
DOI: 10.1007/s10532-011-9524-7
Abstrakt: Four identical lab scale sequencing batch reactors R, R1, R2, and R3, were used to assess nitrophenol biodegradation using a single sludge biomass containing Thiosphaera pantotropha. Nitrophenols [4-Nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP) and 2,4,6-trinitrophenol (2,4,6-TNP)] were biotransformed by heterotrophic nitrification and aerobic denitrification (SND). Reactor R was used as background control, whereas R1, R2, and R3 were fed with 4-NP, 2,4-DNP, and 2,4,6-TNP, respectively. The concentration of each nitrophenol was gradually increased from 2.5 to 200 mg/l along with increase in COD, during acclimation studies. The final COD maintained was 4,500 mg/l with each nitrophenolic loading of 200 mg/l. During late phase of acclimation and HRT study, a filamentous organism started appearing in 2,4-DNP and 2,4,6-TNP bioreactors. Filaments were never found in 4-NP and background control reactor. Biochemistry and physiology behind filamentous organism development, was studied to obtain permanent solution for its removal. The effect of different input parameters such as COD loading, DO levels, SVI etc. were analyzed. The morphology and development of filamentous organism were examined extensively using microscopic techniques involving ESEM, oil immersion, phase contrast, and dark field microscopy. The organism was grown and isolated on selective agar plates and was identified as member of Streptomyses species.
Databáze: MEDLINE