Proteomic profiling of human retinal pigment epithelium exposed to an advanced glycation-modified substrate.

Autor: Glenn JV; School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK., Mahaffy H, Dasari S, Oliver M, Chen M, Boulton ME, Xu H, Curry WJ, Stitt AW
Jazyk: angličtina
Zdroj: Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie [Graefes Arch Clin Exp Ophthalmol] 2012 Mar; Vol. 250 (3), pp. 349-59. Date of Electronic Publication: 2011 Nov 13.
DOI: 10.1007/s00417-011-1856-9
Abstrakt: Purpose: The retinal pigment epithelium (RPE) and underlying Bruch's membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell-substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch's membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this "aged" substrate impacts RPE function and to map the localisation of identified proteins in ageing retina.
Methods: Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina.
Results: Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections.
Conclusions: This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch"s membrane could play a significant role in age-related dysfunction of the RPE.
Databáze: MEDLINE