A child with mild X-linked intellectual disability and a microduplication at Xp22.12 including RPS6KA3.

Autor: Tejada MI; Molecular Genetics Laboratory, Department of Biochemistry, Cruces Hospital, 48903 Barakaldo, Bizkaia, Spain. mariaisabel.tejadaminguez@osakidetza.net, Martínez-Bouzas C, García-Ribes A, Larrucea S, Acquadro F, Cigudosa JC, Belet S, Froyen G, López-Aríztegui MA
Jazyk: angličtina
Zdroj: Pediatrics [Pediatrics] 2011 Oct; Vol. 128 (4), pp. e1029-33. Date of Electronic Publication: 2011 Sep 19.
DOI: 10.1542/peds.2010-0388
Abstrakt: Multiplex ligation-dependent probe amplification (MLPA) and array- comparative genomic hybridization analysis have been proven to be useful in the identification of submicroscopic copy-number imbalances in families with nonsyndromic X-linked intellectual disability (NS-XLID). Here we report the first description of a child with mild intellectual disability and a submicroscopic duplication at Xp22.12 identified by MLPA with a P106 MRX kit (MRC-Holland, Amsterdam, Netherlands) and further confirmed and characterized with a custom 244-k oligo-array, fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), and immunoblotting. This 1.05-megabase duplication encompasses 7 genes, RPS6KA3 being the only of these genes known to be related to ID. The proband was an 8-year-old boy referred to the genetics unit for psychomotor retardation and learning disabilities. Both maternal brothers also showed learning difficulties and delayed language during childhood in a similar way to the proband. These boys also carried the duplication, as did the healthy mother and grandmother of the proband. The same duplication was also observed in the 5-year-old younger brother who presented with features of developmental delay and learning disabilities during the previous year. Increased RPS6KA3/RSK2 levels were demonstrated in the proband by qPCR and immunoblotting. To our knowledge, this is the first family identified with a submicroscopic duplication including the entire RPS6KA3/RSK2 gene, and our findings suggest that an increased dose of this gene is responsible for a mild form of NS-XLID.
Databáze: MEDLINE