Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection.

Autor: Verkaik NJ; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands., Nguyen DT, de Vogel CP, Moll HA, Verbrugh HA, Jaddoe VW, Hofman A, van Wamel WJ, van den Hoogen BG, Buijs-Offerman RM, Ludlow M, de Witte L, Osterhaus AD, van Belkum A, de Swart RL
Jazyk: angličtina
Zdroj: Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases [Clin Microbiol Infect] 2011 Dec; Vol. 17 (12), pp. 1840-4. Date of Electronic Publication: 2011 Aug 30.
DOI: 10.1111/j.1469-0691.2011.03480.x
Abstrakt: It remains largely unknown which factors determine the clinical outcome of human metapneumovirus (HMPV) infections. The aim of the present study was to analyse whether exposure to bacterial pathogens can influence HMPV infections. From 57 children, serum samples and colonization data for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Streptococcus pneumoniae were collected at 1.5, 6, 14 and 24 months of age. Seroconversion rates to HMPV were determined and related to bacterial carriage. Frequent nasopharyngeal carriage (≥2 times in the first 2 years of life) of S. pneumoniae, but not of the other three pathogens, was associated with increased seroconversion rates of infants to HMPV at the age of 2 years (frequently vs. less exposed, 93% vs. 59%; p <0.05). Subsequently, the susceptibility of well-differentiated normal human bronchial epithelial cells (wd-NHBE) pre-incubated with bacterial pathogens to in vitro HMPV infection was evaluated. Pre-incubation of wd-NHBE with S. pneumoniae resulted in increased susceptibility to infection with HMPV-enhanced green fluorescent protein (EGFP), as determined by enumeration of EGFP-positive cells. This was not the case for cells pre-incubated with H. influenzae, M. catarrhalis on S. aureus. We conclude that exposure to S. pneumoniae can modulate HMPV infection.
(© 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.)
Databáze: MEDLINE