Abstrakt: |
Protein-based biopharmaceuticals are becoming increasingly widely used as therapeutic agents, and the characterization of these biopharmaceuticals poses a significant analytical challenge. In particular, monitoring posttranslational modifications (PTMs), such as glycosylation, is an important aspect of this characterization because these glycans can strongly affect the stability, immunogenicity, and pharmacokinetics of these biotherapeutic drugs. Raman spectroscopy is a powerful tool, with many emerging applications in the bioprocessing arena. Although the technique has a relatively rich history in protein science, only recently has Raman spectroscopy been investigated for assessing posttranslational modifications, including phosphorylation, acetylation, trimethylation, and ubiquitination. In this investigation, we develop for the first time Raman spectroscopy combined with multivariate data analyses, including principal components analysis and partial least-squares regression, for the determination of the glycosylation status of proteins and quantifying the relative concentrations of the native ribonuclease (RNase) A protein and RNase B glycoprotein within mixtures. |