Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance.

Autor: Mulvihill EE; Vascular Biology, Robarts Research Institute, London, Ontario, Canada., Assini JM, Lee JK, Allister EM, Sutherland BG, Koppes JB, Sawyez CG, Edwards JY, Telford DE, Charbonneau A, St-Pierre P, Marette A, Huff MW
Jazyk: angličtina
Zdroj: Diabetes [Diabetes] 2011 May; Vol. 60 (5), pp. 1446-57. Date of Electronic Publication: 2011 Apr 06.
DOI: 10.2337/db10-0589
Abstrakt: Objective: Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis.
Research Design and Methods: Lipoprotein secretion was determined in HepG2 cells incubated with nobiletin or insulin. mRNA abundance was evaluated by quantitative real-time PCR, and Western blotting was used to demonstrate activation of cell signaling pathways. In LDL receptor-deficient mice (Ldlr(-/-)) fed a Western diet supplemented with nobiletin, metabolic parameters, gene expression, fatty acid oxidation, glucose homeostasis, and energy expenditure were documented. Atherosclerosis was quantitated by histological analysis.
Results: In HepG2 cells, activation of mitogen-activated protein kinase-extracellular signal-related kinase signaling by nobiletin or insulin increased LDLR and decreased MTP and DGAT1/2 mRNA, resulting in marked inhibition of apoB100 secretion. Nobiletin, unlike insulin, did not induce phosphorylation of the insulin receptor or insulin receptor substrate-1 and did not stimulate lipogenesis. In fat-fed Ldlr(-/-) mice, nobiletin attenuated dyslipidemia through a reduction in VLDL-triglyceride (TG) secretion. Nobiletin prevented hepatic TG accumulation, increased expression of Pgc1α and Cpt1α, and enhanced fatty acid β-oxidation. Nobiletin did not activate any peroxisome proliferator-activated receptor (PPAR), indicating that the metabolic effects were PPAR independent. Nobiletin increased hepatic and peripheral insulin sensitivity and glucose tolerance and dramatically attenuated atherosclerosis in the aortic sinus.
Conclusions: Nobiletin provides insight into treatments for dyslipidemia and atherosclerosis associated with insulin-resistant states.
Databáze: MEDLINE