Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C.

Autor: Kudryashova EV; Wagenigen University, Wagenigen, The Netherlands., Leferink NG, Slot IG, van Berkel WJ
Jazyk: angličtina
Zdroj: Biochimica et biophysica acta [Biochim Biophys Acta] 2011 May; Vol. 1814 (5), pp. 545-52. Date of Electronic Publication: 2011 Mar 21.
DOI: 10.1016/j.bbapap.2011.03.001
Abstrakt: Trypanosoma cruzi, the aetiological agent of Chagas' disease, is unable to salvage vitamin C (l-ascorbate) from its environment and relies on de novo synthesis for its survival. Because humans lack the capacity to synthesize ascorbate, the trypanosomal enzymes involved in ascorbate biosynthesis are interesting targets for drug therapy. The terminal step in ascorbate biosynthesis is catalyzed by flavin-dependent aldonolactone oxidoreductases belonging to the vanillyl-alcohol oxidase (VAO) protein family. Here we studied the properties of recombinant T. cruzi galactonolactone oxidoreductase (TcGAL), refolded from inclusion bodies using a reverse micelles system. The refolded enzyme shows native-like secondary structure and is active with both l-galactono-1,4-lactone and d-arabinono-1,4-lactone. At odd with an earlier claim, TcGAL employs a non-covalently bound FAD as redox-active cofactor. Moreover, it is shown for the first time that TcGAL can use molecular oxygen as electron acceptor. This is in line with the absence of a recently identified gatekeeper residue that prevents aldonolactone oxidoreductases from plants to act as oxidases.
(Copyright © 2011 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE