Anion dependent redox changes in iron bis-terdentate nitroxide {NNO} chelates.

Autor: Gass IA; School of Chemistry, Monash University, Clayton, Victoria 3800, Australia., Gartshore CJ, Lupton DW, Moubaraki B, Nafady A, Bond AM, Boas JF, Cashion JD, Milsmann C, Wieghardt K, Murray KS
Jazyk: angličtina
Zdroj: Inorganic chemistry [Inorg Chem] 2011 Apr 04; Vol. 50 (7), pp. 3052-64. Date of Electronic Publication: 2011 Mar 08.
DOI: 10.1021/ic102588h
Abstrakt: The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(•)), produces the mononuclear transition metal complex [Fe(II)(L(•))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mössbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mössbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(•) coordinate equatorially while the oxygen containing the radical from L(•) coordinates axially forming a linear O(•)··Fe(II)··O(•) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.
Databáze: MEDLINE