Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis.

Autor: Boyer O; INSERM U983, Tour Lavoisier, 6 étage, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France., Benoit G, Gribouval O, Nevo F, Tête MJ, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld JP, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler MC, Broutin I, Mollet G, Antignac C
Jazyk: angličtina
Zdroj: Journal of the American Society of Nephrology : JASN [J Am Soc Nephrol] 2011 Feb; Vol. 22 (2), pp. 239-45. Date of Electronic Publication: 2011 Jan 21.
DOI: 10.1681/ASN.2010050518
Abstrakt: The recent identification of mutations in the INF2 gene, which encodes a member of the formin family of actin-regulating proteins, in cases of familial FSGS supports the importance of an intact actin cytoskeleton in podocyte function. To determine better the prevalence of INF2 mutations in autosomal dominant FSGS, we screened 54 families (78 patients) and detected mutations in 17% of them. All mutations were missense variants localized to the N-terminal diaphanous inhibitory domain of the protein, a region that interacts with the C-terminal diaphanous autoregulatory domain, thereby competing for actin monomer binding and inhibiting depolymerization. Six of the seven distinct altered residues localized to an INF2 region that corresponded to a subdomain of the mDia1 diaphanous inhibitory domain reported to co-immunoprecipitate with IQ motif-containing GTPase-activating protein 1 (IQGAP1). In addition, we evaluated 84 sporadic cases but detected a mutation in only one patient. In conclusion, mutations in INF2 are a major cause of autosomal dominant FSGS. Because IQGAP1 interacts with crucial podocyte proteins such as nephrin and PLCε1, the identification of mutations that may alter the putative INF2-IQGAP1 interaction provides additional insight into the pathophysiologic mechanisms linking formin proteins to podocyte dysfunction and FSGS.
Databáze: MEDLINE