Abstrakt: |
We explored the interacting effects of marine-derived nutrient fertilization and physical disturbance introduced by coastal river otters (Lontra canadensis) on the production and nutrient status of pristine shrub and tree communities in Prince William Sound, Alaska, USA. We compared production of trees and shrubs between latrines and non-latrines, while accounting for otter site selection, by sampling areas on and off sites. Nitrogen stable isotope analysis (delta15N) indicated that dominant tree and shrub species assimilated the marine-derived N excreted by otters. In association with this uptake, tree production increased, but shrub density and nonwoody aboveground shrub production decreased. The reduced shrub production was caused by destruction of ramets, especially blueberry (Vaccinium spp.), through physical disturbance by river otters. False azalea (Menziesia ferruginea) ramets were less sensitive to otter disturbance. Although surviving individual blueberry ramets showed a tendency for increased production per plant, false azalea allocated excess N to storage in leaves rather than growth. We found that plant responses to animal activity vary among species and levels of biological organization (leaf, plant, ecosystem). Such differences should be accounted for when assessing the influence of river otters on the carbon budget of Alaskan coastal forests at the landscape scale. |