Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition.

Autor: Zhang WB; Department of Physiology, China Pharmaceutical University, Nanjing 210009, China., Wang Z, Shu F, Jin YH, Liu HY, Wang QJ, Yang Y
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 2010 Dec 24; Vol. 285 (52), pp. 40461-71. Date of Electronic Publication: 2010 Sep 29.
DOI: 10.1074/jbc.M110.164046
Abstrakt: Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumors including malignant glioblastoma. The mechanism of TMZ-induced glioblastoma cell death and apoptosis, however, is not fully understood. Here, we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found that methylating agents TMZ and N-methyl-N'-nitro-N-nitrosoguanidine induce AMPK activation in primary cultured human glioblastoma and glioblastoma cell lines. TMZ-induced O(6)-methylguanine production is involved in AMPK activation. O(6)-benzylguanine, an O(6)-methylguanine-DNA methyltransferase inhibitor, enhances TMZ-induced O(6)-methylguanine production, leading to enhanced reactive oxygen species production, which serves as an upstream signal for AMPK activation. Activation of AMPK is involved in TMZ-induced glioblastoma cell death and apoptosis. AMPK inhibitor (Compound C) or AMPKα siRNA knockdown inhibits TMZ-induced glioblastoma cell death and apoptosis, whereas AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside enhances it. In further studies, we found that activation of AMPK is involved in TMZ-induced p53 activation and subsequent p21, Noxa, and Bax up-regulation. Activation of AMPK by TMZ also inhibits mTOR complex 1 (mTORC1) signaling and promotes anti-apoptosis protein Bcl-2 down-regulation, which together mediate TMZ-induced pro-cell apoptosis effects. Our study suggests that activation of AMPK by TMZ contributes to glioblastoma cell apoptosis, probably by promoting p53 activation and inhibiting mTORC1 signaling.
Databáze: MEDLINE