Metabolization of [Ru(eta(6)-C (6)H (5)CF (3))(pta)Cl (2)]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand.

Autor: Egger AE; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland., Hartinger CG, Renfrew AK, Dyson PJ
Jazyk: angličtina
Zdroj: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry [J Biol Inorg Chem] 2010 Aug; Vol. 15 (6), pp. 919-27. Date of Electronic Publication: 2010 Apr 06.
DOI: 10.1007/s00775-010-0654-x
Abstrakt: The anticancer ruthenium-arene compound [Ru(eta(6)-C(6)H(5)CF(3))(pta)Cl(2)] (where pta is 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane), termed RAPTA-CF3, with the electron-withdrawing alpha,alpha,alpha-trifluorotoluene ligand, is one of the most cytotoxic RAPTA compounds known. To rationalize the high observed cytotoxicity, the hydrolysis of RAPTA-CF3 in water and brine (100 mM sodium chloride) and its reactions with the protein ubiquitin and a double-stranded oligonucleotide (5'-GTATTGGCACGTA-3') were studied using NMR spectroscopy, high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and gel electrophoresis. The aquation of the ruthenium-chlorido complex was accompanied by a loss of the arene ligand, independent of the chloride concentration, which is a special property of the compound not observed for other ruthenium-arene complexes with relatively stable ruthenium-arene bonds. Accordingly, the mass spectra of the biomolecule reaction mixtures contained mostly [Ru(pta)]-biomolecule adducts, whereas [Ru(pta)(arene)] adducts typical of other RAPTA compounds were not observed in the protein or DNA binding studies. Gel electrophoresis experiments revealed a significant degree of decomposition of the oligonucleotide, which was more pronounced in the case of RAPTA-CF3 compared with RAPTA-C. Consequently, facile arene loss appears to be responsible for the increased cytotoxicity of RAPTA-CF3.
Databáze: MEDLINE