Auditory evoked potentials and impairments to psychomotor activity evoked by falling asleep.

Autor: Dorokhov VB; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia. vbdorokhov@mail.ru, Verbitskaya YS, Lavrova TP
Jazyk: angličtina
Zdroj: Neuroscience and behavioral physiology [Neurosci Behav Physiol] 2010 May; Vol. 40 (4), pp. 411-9. Date of Electronic Publication: 2010 Mar 26.
DOI: 10.1007/s11055-010-9272-x
Abstrakt: Sounds provide the most suitable stimuli for studies of information processes occurring in the brain during falling asleep and at different stages of sleep. The widely used analysis of evoked potentials averaged for groups of subjects has a number of disadvantages associated with their individual variability. Thus, in the present study, measures of the individual components of auditory evoked potentials were determined and selectively summed for individual subjects, with subsequent analysis by group. The aim of the present work was to identify measures of auditory evoked potentials providing quantitative assessment of the dynamics of the brain's functional state during the appearance of errors in activity associated with decreases in the level of waking and falling asleep. A monotonous psychomotor test was performed in the lying position with the eyes closed; this consisted of two alternating parts: the first was counting auditory stimuli from 1 to 10 with simultaneous pressing of a button, and the second was counting stimuli from 1 to 5 silently without pressing the button, and so on. Computer-generated sound stimuli (duration 50 msec, envelope filling frequency 1000 Hz, intensity 60 dB) were presented binaurally with interstimulus intervals of 2.4-2.7 sec. A total of 41 subjects took part (both genders, mean age 25 years), of which only 23 fell asleep; data for 14 subjects with sufficient episodes of falling asleep were analyzed. Comparison of measures of auditory evoked potentials (the latencies and amplitudes of the N1, P2, N2, and P3 components) during correct and erroneous psychomotor test trials showed that decreases in the level of consciousness elicited significant increases in the amplitudes of the components of the vertex N1-P2-N2 complex in series without button pressing. The greatest changes in auditory evoked potentials in both series were seen in the N2 component, with latency 330-360 msec, which has a common origin with the EEG theta rhythm and is characteristic of the first stage of sleep.
Databáze: MEDLINE