Autor: |
Wang TT; Department of Physiology, Montreal General Hospital, Canada., Dabbas B, Laperriere D, Bitton AJ, Soualhine H, Tavera-Mendoza LE, Dionne S, Servant MJ, Bitton A, Seidman EG, Mader S, Behr MA, White JH |
Jazyk: |
angličtina |
Zdroj: |
The Journal of biological chemistry [J Biol Chem] 2010 Jan 22; Vol. 285 (4), pp. 2227-31. Date of Electronic Publication: 2009 Nov 30. |
DOI: |
10.1074/jbc.C109.071225 |
Abstrakt: |
Vitamin D signaling through its nuclear vitamin D receptor has emerged as a key regulator of innate immunity in humans. Here we show that hormonal vitamin D, 1,25-dihydroxyvitamin D(3), robustly stimulates expression of pattern recognition receptor NOD2/CARD15/IBD1 gene and protein in primary human monocytic and epithelial cells. The vitamin D receptor signals through distal enhancers in the NOD2 gene, whose function was validated by chromatin immunoprecipitation and chromatin conformation capture assays. A key downstream signaling consequence of NOD2 activation by agonist muramyl dipeptide is stimulation of NF-kappaB transcription factor function, which induces expression of the gene encoding antimicrobial peptide defensin beta2 (DEFB2/HBD2). Pretreatment with 1,25-dihydroxyvitamin D(3) synergistically induced NF-kappaB function and expression of genes encoding DEFB2/HBD2 and antimicrobial peptide cathelicidin in the presence of muramyl dipeptide. Importantly, this synergistic response was also seen in macrophages from a donor wild type for NOD2 but was absent in macrophages from patients with Crohn disease homozygous for non-functional NOD2 variants. These studies provide strong molecular links between vitamin D deficiency and the genetics of Crohn disease, a chronic incurable inflammatory bowel condition, as Crohn's pathogenesis is associated with attenuated NOD2 or DEFB2/HBD2 function. |
Databáze: |
MEDLINE |
Externí odkaz: |
|