Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.

Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, Val(A16) blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. Val(A16) destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike Val(A16), preserve folding efficiency. We propose that Leu(A16) stabilizes nonlocal interactions between nascent alpha-helices in the A- and B-domains to facilitate initial pairing of Cys(A20) and Cys(B19), thus surmounting their wide separation in sequence. Although Val(A16) is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [Val(A16)]insulin and [Val(A16)]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved. -->
References: Fold Des. 1996;1(6):441-50. (PMID: 9080190)
Biochemistry. 2000 Dec 19;39(50):15429-40. (PMID: 11112528)
Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21. (PMID: 9757107)
Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9. (PMID: 2025413)
J Clin Invest. 2002 Feb;109(4):443-5. (PMID: 11854314)
Biochemistry. 1993 Oct 12;32(40):10773-8. (PMID: 8399225)
Horm Metab Res. 1988 Jul;20(7):443-4. (PMID: 3049292)
Biochemistry. 1990 Sep 11;29(36):8389-401. (PMID: 2252901)
Nat Struct Biol. 1997 Jan;4(1):10-9. (PMID: 8989315)
J Mol Biol. 1996 Nov 29;264(2):390-403. (PMID: 8951384)
J Biol Chem. 2009 Jul 17;284(29):19159-63. (PMID: 19395706)
J Biol Chem. 2009 May 22;284(21):14586-96. (PMID: 19321436)
Biochemistry. 1993 May 18;32(19):5203-13. (PMID: 8494897)
FASEB J. 2004 May;18(7):917-9. (PMID: 15033933)
Biochemistry. 2002 Jan 22;41(3):809-19. (PMID: 11790102)
Biochemistry. 1987 Nov 3;26(22):6966-71. (PMID: 3322393)
J Biol Chem. 2006 Aug 25;281(34):24900-9. (PMID: 16762918)
Protein Sci. 2003 Apr;12(4):768-75. (PMID: 12649435)
Proteins. 2000 May 15;39(3):244-51. (PMID: 10737946)
J Biol Chem. 1995 Sep 1;270(35):20417-23. (PMID: 7657617)
Biochem J. 1990 Jun 1;268(2):429-35. (PMID: 2194448)
Biochim Biophys Acta. 1996 Aug 15;1296(1):63-8. (PMID: 8765230)
Biochemistry. 1997 Apr 15;36(15):4616-22. (PMID: 9109671)
Proteins. 1999 Apr 1;35(1):34-40. (PMID: 10090284)
Protein J. 2008 Apr;27(3):192-6. (PMID: 18071885)
Proteins. 2000;Suppl 4:1-7. (PMID: 11013396)
Trans N Y Acad Sci. 1967 Nov;30(1):60-8. (PMID: 4299035)
Diabetes. 2008 Apr;57(4):1131-5. (PMID: 18192540)
Curr Opin Struct Biol. 1999 Feb;9(1):92-101. (PMID: 10047588)
Biochemistry. 1993 Mar 16;32(10):2631-5. (PMID: 8448120)
Protein Sci. 1998 Jan;7(1):158-77. (PMID: 9514271)
Biochemistry. 1990 Oct 2;29(39):9289-93. (PMID: 2271596)
Curr Opin Chem Biol. 1998 Feb;2(1):31-9. (PMID: 9667917)
J Clin Invest. 2002 Feb;109(4):525-32. (PMID: 11854325)
Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):206-18. (PMID: 10089411)
Biotechnol Bioeng. 1999 Mar 20;62(6):693-703. (PMID: 9951525)
Annu Rev Phys Chem. 1997;48:545-600. (PMID: 9348663)
Protein Expr Purif. 2003 Feb;27(2):210-9. (PMID: 12597879)
J Biol Chem. 2002 Nov 8;277(45):43443-53. (PMID: 12196530)
Biochemistry. 1994 Jun 7;33(22):6758-61. (PMID: 7515683)
Nature. 1990 Mar 15;344(6263):268-70. (PMID: 2314462)
Nat Struct Biol. 1995 Feb;2(2):129-38. (PMID: 7749917)
Biol Chem. 1997 Aug;378(8):731-44. (PMID: 9377467)
Biochemistry. 2004 Dec 28;43(51):16119-33. (PMID: 15610006)
FEBS J. 2007 Feb;274(3):630-58. (PMID: 17288551)
Biochemistry. 2001 Mar 6;40(9):2662-8. (PMID: 11258877)
Phys Rev Lett. 1991 Sep 16;67(12):1665-1668. (PMID: 10044213)
Q Rev Biophys. 2005 Aug;38(3):245-88. (PMID: 16780604)
J Mol Graph. 1995 Oct;13(5):323-30, 307-8. (PMID: 8603061)
Diabetes. 1978;27 Suppl 1:145-8. (PMID: 344111)
MMW Munch Med Wochenschr. 1983 May 4;Suppl 1:S14-20. (PMID: 6408426)
Biochemistry. 2002 Jul 30;41(30):9389-97. (PMID: 12135360)
Biochemistry. 1972 Oct 24;11(22):4013-6. (PMID: 4673642)
Nat Cell Biol. 2000 Jun;2(6):326-32. (PMID: 10854322)
Recent Prog Horm Res. 1969;25:207-82. (PMID: 4311938)
Diabetes. 1997 May;46(5):887-94. (PMID: 9133560)
Nature. 1988 Jun 16;333(6174):679-82. (PMID: 3287182)
Hoppe Seylers Z Physiol Chem. 1978 Jan;359(1):113-23. (PMID: 627397)
J Biol Chem. 2001 Oct 26;276(43):40018-24. (PMID: 11517220)
Nature. 1976 May 13;261(5556):166-8. (PMID: 1272390)
Diabetes. 2008 Apr;57(4):1034-42. (PMID: 18162506)
Biochemistry. 1987 Nov 3;26(22):6975-9. (PMID: 3322395)
Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369-456. (PMID: 2905485)
Biochem Biophys Res Commun. 1968 Jul 26;32(2):155-60. (PMID: 5691527)
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4976-81. (PMID: 9560213)
Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15040-4. (PMID: 17855560)
J Biol Chem. 1990 Apr 5;265(10):5448-52. (PMID: 2108140)
J Biol Chem. 2006 Aug 25;281(34):24889-99. (PMID: 16728398)
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15841-6. (PMID: 17898179)
Biochemistry. 2002 Dec 17;41(50):14700-15. (PMID: 12475219)
Protein Sci. 2002 Jan;11(1):104-16. (PMID: 11742127)
J Biol Chem. 2006 Sep 22;281(38):28131-42. (PMID: 16864583)
Biotechnol Bioeng. 2001 Apr 5;73(1):74-9. (PMID: 11255154)
Biol Chem. 2001 Mar;382(3):443-8. (PMID: 11347892)
Diabetes Care. 1992 May;15(5):666-92. (PMID: 1516487)
Genes Dev. 1999 May 15;13(10):1211-33. (PMID: 10346810)
Biochemistry. 2001 Sep 18;40(37):11022-9. (PMID: 11551198)
J Biol Chem. 1993 May 25;268(15):10766-72. (PMID: 8496143)
Biochemistry. 1993 May 18;32(19):5214-21. (PMID: 8494898)
J Clin Invest. 1999 Jan;103(1):27-37. (PMID: 9884331)
J Biol Chem. 1997 May 16;272(20):12978-83. (PMID: 9148904)
J Biol Chem. 2003 Apr 25;278(17):14798-805. (PMID: 12590147)
J Biol Chem. 2006 Aug 4;281(31):22386-22396. (PMID: 16751187)
Protein Sci. 2003 Nov;12(11):2412-9. (PMID: 14573855)
Biochemistry. 1991 Jul 30;30(30):7373-89. (PMID: 1906742)
Biochemistry. 2005 Apr 5;44(13):4984-99. (PMID: 15794637)
J Biol Chem. 1975 Aug 25;250(16):6291-5. (PMID: 808541)
Biochemistry. 2001 Oct 16;40(41):12299-311. (PMID: 11591149)
Science. 1966 Dec 23;154(3756):1509-14. (PMID: 5332548)
J Biol Chem. 1994 Aug 19;269(33):20838-44. (PMID: 8063699)
Biochemistry. 1992 Feb 18;31(6):1749-56. (PMID: 1737028)
J Biol Chem. 2003 May 16;278(20):17800-9. (PMID: 12624089)
J Biol Chem. 2009 May 22;284(21):14597-608. (PMID: 19321435)
Science. 1997 Dec 12;278(5345):1928-31. (PMID: 9395391)
J Biol Chem. 2005 Apr 8;280(14):13209-12. (PMID: 15705595)
J Mol Biol. 2003 Jul 18;330(4):821-37. (PMID: 12850150)
Diabetes. 2003 Feb;52(2):409-16. (PMID: 12540615)
Science. 1992 Jan 10;255(5041):178-83. (PMID: 1553543)
Science. 1990 Nov 2;250(4981):646-51. (PMID: 2237415)
J Mol Biol. 1996 Jun 7;259(2):297-313. (PMID: 8656430)
Diabetes. 1972;21(2 Suppl):486-91. (PMID: 4559916)
Biochemistry. 1987 Nov 3;26(22):6972-5. (PMID: 3322394)
Methods Enzymol. 2000;317:393-409. (PMID: 10829292)
Genes Dev. 1998 Jun 15;12(12):1812-24. (PMID: 9637683)
J Clin Invest. 2008 Jun;118(6):2148-56. (PMID: 18451997)
Curr Opin Struct Biol. 1998 Apr;8(2):189-94. (PMID: 9631292)
Grant Information: DK0697674 United States DK NIDDK NIH HHS; R01 DK048280 United States DK NIDDK NIH HHS; R01 DK052085 United States DK NIDDK NIH HHS; DK48280 United States DK NIDDK NIH HHS; R01 DK056673 United States DK NIDDK NIH HHS; DK052085 United States DK NIDDK NIH HHS; DK56673 United States DK NIDDK NIH HHS
Molecular Sequence: PDB 3GKY
Substance Nomenclature: 0 (Disulfides)
0 (Insulin)
0 (Protein Precursors)
HG18B9YRS7 (Valine)
Entry Date(s): Date Created: 20091024 Date Completed: 20100205 Latest Revision: 20211020
Update Code: 20231215
PubMed Central ID: PMC2787385
DOI: 10.1074/jbc.M109.046888
PMID: 19850922
Autor: Liu M; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA., Wan ZL, Chu YC, Aladdin H, Klaproth B, Choquette M, Hua QX, Mackin RB, Rao JS, De Meyts P, Katsoyannis PG, Arvan P, Weiss MA
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 2009 Dec 11; Vol. 284 (50), pp. 35259-72. Date of Electronic Publication: 2009 Oct 22.
DOI: 10.1074/jbc.M109.046888
Abstrakt: Protein evolution is constrained by folding efficiency ("foldability") and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with beta-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (Leu(A16) --> Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, Val(A16) blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. Val(A16) destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike Val(A16), preserve folding efficiency. We propose that Leu(A16) stabilizes nonlocal interactions between nascent alpha-helices in the A- and B-domains to facilitate initial pairing of Cys(A20) and Cys(B19), thus surmounting their wide separation in sequence. Although Val(A16) is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [Val(A16)]insulin and [Val(A16)]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved.
Databáze: MEDLINE