Autor: |
Shein NA; Department of Pharmacology, The Hebrew University School of Pharmacy, Jerusalem, Israel., Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, Trembovler V, Mascagni P, Dinarello CA, Shohami E |
Jazyk: |
angličtina |
Zdroj: |
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2009 Dec; Vol. 23 (12), pp. 4266-75. Date of Electronic Publication: 2009 Sep 01. |
DOI: |
10.1096/fj.09-134700 |
Abstrakt: |
Despite efforts aimed at developing novel therapeutics for traumatic brain injury (TBI), no specific pharmacological agent is currently clinically available. Here, we show that the pan-histone deacetylase (HDAC) inhibitor ITF2357, a compound shown to be safe and effective in humans, improves functional recovery and attenuates tissue damage when administered as late as 24 h postinjury. Using a well-characterized, clinically relevant mouse model of closed head injury (CHI), we demonstrate that a single dose of ITF2357 administered 24 h postinjury improves neurobehavioral recovery from d 6 up to 14 d postinjury (improved neurological score vs. vehicle; P< or =0.05), and that this functional benefit is accompanied by decreased neuronal degeneration, reduced lesion volume (22% reduction vs. vehicle; P< or =0.01), and is preceded by increased acetylated histone H3 levels and attenuation of injury-induced decreases in cytoprotective heat-shock protein 70 kDa and phosphorylated Akt. Moreover, reduced glial accumulation and activation were observed 3 d postinjury, and total p53 levels at the area of injury and caspase-3 immunoreactivity within microglia/macrophages at the trauma area were elevated, suggesting enhanced clearance of these cells via apoptosis following treatment. Hence, our findings underscore the relevance of HDAC inhibitors for ameliorating trauma-induced functional deficits and warrant consideration of applying ITF2357 for this indication. |
Databáze: |
MEDLINE |
Externí odkaz: |
|