Involvement of signaling pathways in bovine sperm motility, and effect of ergot alkaloids.

Autor: Wang H; Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA., Looper ML, Johnson ZB, Rorie RW, Rosenkrans CF Jr
Jazyk: angličtina
Zdroj: In vitro cellular & developmental biology. Animal [In Vitro Cell Dev Biol Anim] 2009 Sep; Vol. 45 (8), pp. 483-9. Date of Electronic Publication: 2009 May 19.
DOI: 10.1007/s11626-009-9191-8
Abstrakt: There is evidence that ergot alkaloids can directly interact with mammalian spermatozoa affecting sperm functions. Ergot alkaloids exert their toxic or pharmaceutical effects through membrane receptor-mediated activities. This study investigated the signaling pathways involved in the in vitro inhibitory effects of both ergotamine (ET) and dihydroergotamine (DEHT) on the relative motility of bovine spermatozoa using specific inhibitors. Motile bovine spermatozoa were prepared using a Percoll gradient and incubated with ergot alkaloids with and without signaling pathway inhibitors. Co-incubation of ET or DHET with 100 microM prazosin (alpha 1-adrenergic receptor inhibitor) decreased (p < 0.05) relative motility of spermatozoa when compared with controls. In addition, preincubation of spermatozoa with 10 or 20 microM prazosin and DHET also reduced (p < 0.05) the number of motile spermatozoa. Relative sperm motility (motility of treated spermatozoa normalized to control sperm motility) was increased (p < 0.05) when co-incubations included ET and yohimbine (alpha 2-adrenergic receptor inhibitor); conversely, co-incubation of yohimbine (100 microM) and DHET decreased (p < 0.05) the percentage of motile spermatozoa when compared with controls. Pertussis toxin and cholera toxin (effectors of inhibitory and stimulatory G-proteins, respectively) altered (p < 0.05) relative sperm motility in a concentration dependent manner; however, co-incubation of pertussis or cholera toxin with ergot alkaloids had no interactive (p = 0.83) effects on the relative motility of spermatozoa. Co-incubation of Rp-cAMP (a membrane-permeable cAMP inhibitor) with 50 microM DHET had no effect (p > 0.05) on relative sperm motility; whereas, the co-incubation of 22.4 or 44.8 microM Rp-cAMP with 50 microM ET increased (p < 0.05) the percentage of motile spermatozoa when compared with 0 or 224 microM Rp-cAMP (49%, 65%, 59%, and 54%, respectively, for 0, 22.4, 44.8, and 224 microM of Rp-cAMP. An interaction between BAPTA-AM (a chelator of intracellular calcium) and alkaloids also impacted (p < 0.05) relative sperm motility. Generally, co-incubating spermatozoa with BAPTA-AM and ET increased the percentage of motile spermatozoa; however, co-incubation with DHET decreased relative sperm motility except with 41 microM BAPTA-AM. Collectively, these observations suggest that ET and DHET decreased the percentage of motile bovine spermatozoa via alpha adrenergic receptors. However, the second messenger systems involved with ergot alkaloid inhibition of relative motility of bovine spermatozoa remain to be elucidated.
Databáze: MEDLINE