Genetic dissection of the mechanisms underlying telomere-associated diseases: impact of the TRF2 telomeric protein on mouse epidermal stem cells.

Autor: Stout GJ; Spanish National Cancer Research Center, Madrid, Spain., Blasco MA
Jazyk: angličtina
Zdroj: Disease models & mechanisms [Dis Model Mech] 2009 Mar-Apr; Vol. 2 (3-4), pp. 139-56. Date of Electronic Publication: 2009 Feb 23.
DOI: 10.1242/dmm.002121
Abstrakt: TRF2 is a telomere-binding protein involved in the protection of chromosome ends. Interestingly, TRF2 is overexpressed in a number of human cancers. Mice with increased TRF2 expression (K5TRF2 mice) display a severe skin phenotype including an increase in skin cancer and premature skin degeneration, which includes increased skin hyperpigmentation and skin dryness; these pathologies are concomitant with dramatic telomere shortening and increased chromosomal instability. Here, we show that K5TRF2 mice have a severe epidermal stem cell (ESC) dysfunction, which is reversed by abrogation of p53 in the absence of rescue of telomere length. Importantly, p53 deletion also rescues severe skin hyperpigmentation in these mice through regulation of alpha-melanocyte-stimulating hormone (alpha-MSH). In addition, skin carcinogenesis is accelerated in K5TRF2/p53(-/-)mice owing to attenuated p21 induction, which enables cell proliferation to resume. Altogether, these results reveal the existence of a DNA damage-dependent checkpoint that acts on ESCs with critically short telomeres and restricts skin proliferation, thereby increasing protection against skin cancer; however, the checkpoint also leads to premature skin aging phenotypes. Finally, the results described here are relevant to our understanding of the pathobiology of those human diseases that are characterized by the presence of critically short telomeres (hereafter referred to as 'telopathies'), such as dyskeratosis congenita which causes severe skin phenotypes including skin hyperpigmentation and skin cancer.
Databáze: MEDLINE