Cell wall polysaccharide synthases are located in detergent-resistant membrane microdomains in oomycetes.

3)-beta-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1-->3)-beta-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth. -->
References: Nature. 2002 Jan 17;415(6869):251. (PMID: 11796973)
Lipids. 1998 Mar;33(3):307-17. (PMID: 9560806)
Eur J Biochem. 2000 Dec;267(24):6989-95. (PMID: 11106408)
Microbiology (Reading). 1997 Jun;143 ( Pt 6):2009-2020. (PMID: 9202477)
Science. 2000 Nov 3;290(5493):972-7. (PMID: 11062127)
J Mol Evol. 1996 Feb;42(2):183-93. (PMID: 8919870)
Curr Genet. 1997 May;31(5):380-95. (PMID: 9162109)
Mol Cell Proteomics. 2003 Apr;2(4):248-61. (PMID: 12754304)
J Neurochem. 2003 Jan;84(1):35-42. (PMID: 12485399)
Nature. 1997 Jun 5;387(6633):569-72. (PMID: 9177342)
J Surg Res. 2006 Nov;136(1):58-69. (PMID: 16979664)
Curr Opin Cell Biol. 2001 Aug;13(4):470-7. (PMID: 11454454)
Carbohydr Res. 2001 Jul 3;333(2):159-63. (PMID: 11448677)
Blood. 2006 Feb 15;107(4):1636-42. (PMID: 16263790)
Proteomics. 2001 Nov;1(11):1359-63. (PMID: 11922595)
Can J Biochem Physiol. 1959 Aug;37(8):911-7. (PMID: 13671378)
Proc Natl Acad Sci U S A. 1982 Jun;79(12):3769-72. (PMID: 16593196)
Anal Biochem. 1980 May 1;104(1):10-4. (PMID: 6892980)
Plant Physiol. 2007 May;144(1):402-18. (PMID: 17337521)
Proteomics. 2003 Apr;3(4):536-48. (PMID: 12687620)
Mol Microbiol. 2006 Oct;62(2):552-65. (PMID: 16978258)
Electrophoresis. 1999 Dec;20(18):3551-67. (PMID: 10612281)
Plant J. 2007 Oct;52(1):147-56. (PMID: 17666022)
Anal Biochem. 1976 May 7;72:248-54. (PMID: 942051)
Trends Biochem Sci. 2005 Aug;30(8):430-6. (PMID: 15996869)
Eur J Biochem. 2001 Sep;268(17):4628-38. (PMID: 11531999)
J Biochem. 1984 Jun;95(6):1671-5. (PMID: 6469944)
J Cell Sci. 2005 Mar 15;118(Pt 6):1099-102. (PMID: 15764592)
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:245-276. (PMID: 15012210)
Science. 2006 Sep 1;313(5791):1261-6. (PMID: 16946064)
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14183-8. (PMID: 12374868)
Biol Chem. 2002 Oct;383(10):1475-80. (PMID: 12452424)
Cell Struct Funct. 1998 Jun;23(3):153-8. (PMID: 9706404)
Mycologia. 2002 Mar-Apr;94(2):273-9. (PMID: 21156497)
Plant Physiol. 2005 Jan;137(1):104-16. (PMID: 15618420)
Glycobiology. 2004 Sep;14(9):775-81. (PMID: 15159383)
Mycologia. 2002 Mar-Apr;94(2):267-72. (PMID: 21156496)
J Biol Chem. 2003 Jun 13;278(24):21601-6. (PMID: 12682040)
Anaerobe. 1995 Apr;1(2):135-9. (PMID: 16887518)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D465-70. (PMID: 16381913)
J Biol Chem. 1996 Dec 20;271(51):32975-80. (PMID: 8955141)
Biochemistry. 2003 May 27;42(20):6264-74. (PMID: 12755631)
J Biol Chem. 2004 Aug 27;279(35):36277-86. (PMID: 15190066)
Eukaryot Cell. 2004 Jun;3(3):675-84. (PMID: 15189988)
J Biol Chem. 2002 Oct 4;277(40):36931-9. (PMID: 12145282)
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5813-8. (PMID: 12724530)
Curr Opin Plant Biol. 2008 Dec;11(6):632-40. (PMID: 18774330)
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. (PMID: 9254694)
Electrophoresis. 2000 Oct;21(16):3488-99. (PMID: 11079568)
Mol Cell Proteomics. 2006 Aug;5(8):1396-411. (PMID: 16648627)
Planta. 1984 Apr;160(5):400-6. (PMID: 24258666)
Nat Rev Mol Cell Biol. 2006 Jun;7(6):456-62. (PMID: 16625153)
Plant Physiol. 1990 Dec;94(4):1748-55. (PMID: 16667912)
J Cell Sci. 2004 Dec 1;117(Pt 25):5955-64. (PMID: 15564373)
Substance Nomenclature: 0 (Algal Proteins)
EC 2.4.1.- (1,3-alpha-D-glucan synthase)
EC 2.4.1.- (Glucosyltransferases)
EC 2.4.1.- (cellulose synthase)
EC 2.4.1.16 (Chitin Synthase)
Entry Date(s): Date Created: 20090210 Date Completed: 20090504 Latest Revision: 20211020
Update Code: 20240829
PubMed Central ID: PMC2663216
DOI: 10.1128/AEM.02728-08
PMID: 19201970
Autor: Briolay A; UMR CNRS 5246-Organisation et Dynamique des Membranes Biologiques, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France., Bouzenzana J, Guichardant M, Deshayes C, Sindt N, Bessueille L, Bulone V
Jazyk: angličtina
Zdroj: Applied and environmental microbiology [Appl Environ Microbiol] 2009 Apr; Vol. 75 (7), pp. 1938-49. Date of Electronic Publication: 2009 Feb 05.
DOI: 10.1128/AEM.02728-08
Abstrakt: The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1-->3)-beta-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1-->3)-beta-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth.
Databáze: MEDLINE