Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding.

Autor: Takala H; Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland., Nurminen E, Nurmi SM, Aatonen M, Strandin T, Takatalo M, Kiema T, Gahmberg CG, Ylänne J, Fagerholm SC
Jazyk: angličtina
Zdroj: Blood [Blood] 2008 Sep 01; Vol. 112 (5), pp. 1853-62. Date of Electronic Publication: 2008 Jun 12.
DOI: 10.1182/blood-2007-12-127795
Abstrakt: Leukocyte integrins of the beta2 family are essential for immune cell-cell adhesion. In activated cells, beta2 integrins are phosphorylated on the cytoplasmic Thr758, leading to 14-3-3 protein recruitment to the beta2 integrin. The mutation of this phosphorylation site impairs cell adhesion, actin reorganization, and cell spreading. Thr758 is contained in a Thr triplet of beta2 that also mediates binding to filamin. Here, we investigated the binding of filamin, talin, and 14-3-3 proteins to phosphorylated and unphosphorylated beta2 integrins by biochemical methods and x-ray crystallography. 14-3-3 proteins bound only to the phosphorylated integrin cytoplasmic peptide, with a high affinity (K(d), 261 nM), whereas filamin bound only the unphosphorylated integrin cytoplasmic peptide (K(d), 0.5 mM). Phosphorylation did not regulate talin binding to beta2 directly, but 14-3-3 was able to outcompete talin for the binding to phosphorylated beta2 integrin. X-ray crystallographic data clearly explained how phosphorylation eliminated filamin binding and induced 14-3-3 protein binding. Filamin knockdown in T cells led to an increase in stimulated cell adhesion to ICAM-1-coated surfaces. Our results suggest that the phosphorylation of beta2 integrins on Thr758 acts as a molecular switch to inhibit filamin binding and allow 14-3-3 protein binding to the integrin cytoplasmic domain, thereby modulating T-cell adhesion.
Databáze: MEDLINE