Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples.

Autor: Huber ME; Department of Physics, University of Colorado Denver, Denver, CO 80217-3364, USA. martin.huber@cudenver.edu, Koshnick NC, Bluhm H, Archuleta LJ, Azua T, Björnsson PG, Gardner BW, Halloran ST, Lucero EA, Moler KA
Jazyk: angličtina
Zdroj: The Review of scientific instruments [Rev Sci Instrum] 2008 May; Vol. 79 (5), pp. 053704.
DOI: 10.1063/1.2932341
Abstrakt: We have fabricated and characterized micro-SQUID susceptometers for use in low-temperature scanning probe microscopy systems. The design features the following: a 4.6 mum diameter pickup loop; an integrated field coil to apply a local field to the sample; an additional counterwound pickup-loop/field-coil pair to cancel the background signal from the applied field in the absence of the sample; modulation coils to allow setting the SQUID at its optimum bias point (independent of the applied field), and shielding and symmetry that minimizes coupling of magnetic fields into the leads and body of the SQUID. We use a SQUID series array preamplifier to obtain a system bandwidth of 1 MHz. The flux noise at 125 mK is approximately 0.25 mu Phi 0/ sqrt Hz above 10 kHz, with a value of 2.5 mu Phi 0/ sqrt Hz at 10 Hz. The nominal sensitivity to electron spins located at the center of the pickup loop is approximately 200 muB/ sqrt Hz above 10 kHz, in the white-noise frequency region.
Databáze: MEDLINE