Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei.

Autor: Vogt BA; Cingulum NeuroSciences Institute and SUNY Upstate Medical University, 4435 Stephanie Drive, Manlius, NY, USA. bvogt@twcny.rr.com, Hof PR, Friedman DP, Sikes RW, Vogt LJ
Jazyk: angličtina
Zdroj: Brain structure & function [Brain Struct Funct] 2008 Aug; Vol. 212 (6), pp. 465-79. Date of Electronic Publication: 2008 Mar 04.
DOI: 10.1007/s00429-008-0178-0
Abstrakt: The midline and intralaminar thalamic nuclei (MITN), locus coeruleus (LC) and cingulate cortex contain nociceptive neurons. The MITN that project to cingulate cortex have a prominent innervation by norepinephrinergic axons primarily originating from the LC. The hypothesis explored in this study is that MITN neurons that project to cingulate cortex receive a disproportionately high LC input that may modulate nociceptive afferent flow into the forebrain. Ten cynomolgus monkeys were evaluated for dopamine-beta hydroxylase (DBH) immunohistochemistry, and nuclei with moderate or high DBH activity were analyzed for intermediate neurofilament proteins, calbindin (CB), and calretinin (CR). Sections of all but DBH were thionin counterstained to assure precise localization in the mediodorsal and MITN, and cytoarchitecture was analyzed with neuron-specific nuclear binding protein. Moderate-high levels of DBH-immunoreactive (ir) axons were generally associated with high densities of CB-ir and CR-ir neurons and low levels of neurofilament proteins. The paraventricular, superior centrolateral, limitans and central nuclei had relatively high and evenly distributed DBH, the magnocellular mediodorsal and paracentral nuclei had moderate DBH-ir, and other nuclei had an even and low level of activity. Some nuclei also have heterogeneities in DBH-ir that raised questions of functional segregation. The anterior multiformis part of the mediodorsal nucleus but not middle and caudal levels had high DBH activity. The posterior parafascicular nucleus (Pf) was heterogeneous with the lateral part having little DBH activity, while its medial division had most DBH-ir axons and its multiformis part had only a small number. These findings suggest that the LC may regulate nociceptive processing in the thalamus. The well established role of cingulate cortex in premotor functions and the projections of Pf and other MITN to the limbic striatum suggests a specific role in mediating motor outflow for the LC-innervated nuclei of the MITN.
Databáze: MEDLINE