Abstrakt: |
Human imaging localizes most visceral nociceptive responses to anterior cingulate cortex (ACC), however, imaging in conscious subjects cannot completely control anticipatory and reflexive activity or resolve neuron activity. This study overcame these shortcomings by recording individual neuron responses in 12 anesthetized and paralyzed rabbits to define the visceronociceptive response pattern by region and layer. Balloon distension was applied to the colon at innocuous (15 mmHg) or noxious (60 mmHg) intensities, and innocuous and noxious mechanical, thermal and electrical stimuli were applied to the skin. Simultaneous recording from multiple regions assured differences were not due to anesthesia and neuron responses were resolved by spike sorting using principal components analysis. Of the total 346 neurons, 48% were nociceptive; responding to noxious levels of visceral or cutaneous stimulation, or both. Visceronociceptive neurons were most frequent in ACC (39%) and midcingulate cortex (MCC, 36%) and infrequent in retrosplenial cortex (RSC, 12%). In contrast, cutaneous nociceptive units were higher in MCC (MCC, 43%; ACC, 32%; RSC, 23%). Visceral-specific neurons were proportionately more frequent in ACC (37%), while cutaneous-specific units predominated in RSC (62.5%). Visceral nociceptive response durations were longer than those for cutaneous responses. Postmortem analysis of electrode tracks confirmed regional designations, and laminar analysis found inhibitory responses mainly in superficial layers and excitatory in deep layers. Thus, cingulate visceral nociception extends beyond ACC, this is the first report of nociceptive activity in RSC including nociceptive cutaneous responses, and these regional differences require a new model of cingulate nociceptive processing. |