Autor: |
Salman M; Department of Medicine/Oncology, University of Texas Health Science Center, San Antonio 78284-7884., Reddy BR, Delgado P, Stotter PL, Fulcher LC, Chamness GC |
Jazyk: |
angličtina |
Zdroj: |
Steroids [Steroids] 1991 Jul; Vol. 56 (7), pp. 375-87. |
DOI: |
10.1016/0039-128x(91)90070-c |
Abstrakt: |
For the successful development of a high-affinity fluorophore-estradiol conjugate, the fluorophore must be attached to the estradiol molecule at a position that interferes least with its binding to the receptor. We have concentrated on 17 alpha substituents as models for fluorophore attachment, based on literature precedent and on our earlier work with small 17 alpha side chains. In this report, we describe syntheses and estrogen receptor binding affinities of 19 analogs of estradiol substituted in the 17 alpha position with larger side chains (of six to 11 carbons), some of which may be synthetically modified to link a fluorophore. These analogs were synthesized either by nucleophilic cleavage of estrone-17 beta-oxirane 3-benzyl ether and subsequent debenzylation (4 to 18), by cross-coupling of alkynes (21 to 24), by alkylation of 17 alpha-ethynylestradiol 3,17-bis(tetrahydropyranyl ether) and subsequent acidic hydrolysis (25 to 28), or by reacting estrone either with appropriate aryl/alkynyllithium reagents (29, 30, and 32) or with benzylmagnesium bromide (31). Relative binding affinities of these newly synthesized analogs were determined for estrogen receptor (rat uterus) using a standard competition assay. The results suggest that analogs with reduced mobility and/or more polarizable electron density in the side chain generally bind more strongly to the receptor. The relative affinities of several selected compounds were also determined in the presence of 4% dimethylformamide; some compounds bearing larger, nonpolar 17 alpha substituents showed dramatically improved affinities, while affinities for compounds with shorter nonpolar side chains remained largely unchanged. These binding affinity results should be useful in designing new high-affinity fluorescent ligands for the estrogen receptor. |
Databáze: |
MEDLINE |
Externí odkaz: |
|