Identifying promising compounds in drug discovery: genetic algorithms and some new statistical techniques.

Autor: Mandal A; Department of Statistics, University of Georgia, Athens, Georgia 30602-1952, USA. amandal@stat.uga.edu, Johnson K, Wu CF, Bornemeier D
Jazyk: angličtina
Zdroj: Journal of chemical information and modeling [J Chem Inf Model] 2007 May-Jun; Vol. 47 (3), pp. 981-8. Date of Electronic Publication: 2007 Apr 11.
DOI: 10.1021/ci600556v
Abstrakt: Throughout the drug discovery process, discovery teams are compelled to use statistics for making decisions using data from a variety of inputs. For instance, teams are asked to prioritize compounds for subsequent stages of the drug discovery process, given results from multiple screens. To assist in the prioritization process, we propose a desirability function to account for a priori scientific knowledge; compounds can then be prioritized based on their desirability scores. In addition to identifying existing desirable compounds, teams often use prior knowledge to suggest new, potentially promising compounds to be created in the laboratory. Because the chemistry space to search can be dauntingly large, we propose the sequential elimination of level combinations (SELC) method for identifying new optimal compounds. We illustrate this method on a combinatorial chemistry example.
Databáze: MEDLINE