Autor: |
Hollick JJ; Northern Institute for Cancer Research, School of Natural Sciences-Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom., Rigoreau LJ, Cano-Soumillac C, Cockcroft X, Curtin NJ, Frigerio M, Golding BT, Guiard S, Hardcastle IR, Hickson I, Hummersone MG, Menear KA, Martin NM, Matthews I, Newell DR, Ord R, Richardson CJ, Smith GC, Griffin RJ |
Jazyk: |
angličtina |
Zdroj: |
Journal of medicinal chemistry [J Med Chem] 2007 Apr 19; Vol. 50 (8), pp. 1958-72. Date of Electronic Publication: 2007 Mar 20. |
DOI: |
10.1021/jm061121y |
Abstrakt: |
Structure-activity relationships have been investigated for inhibition of DNA-dependent protein kinase (DNA-PK) and ATM kinase by a series of pyran-2-ones, pyran-4-ones, thiopyran-4-ones, and pyridin-4-ones. A wide range of IC50 values were observed for pyranones and thiopyranones substituted at the 6-position, with the 3- and 5-positions proving intolerant to substitution. Related pyran-2-ones, pyran-4-ones, and thiopyran-4-ones showed similar IC50 values against DNA-PK, whereas the pyridin-4-one system proved, in general, ineffective at inhibiting DNA-PK. Extended libraries exploring the 6-position of 2-morpholino-pyran-4-ones and 2-morpholino-thiopyrano-4-ones identified the first highly potent and selective ATM inhibitor 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (151C; ATM; IC50=13 nM) and revealed constrained SARs for ATM inhibition compared with DNA-PK. One of the most potent DNA-PK inhibitors identified, 2-(4-methoxyphenyl)-6-(morpholin-4-yl)pyran-4-one (16; DNA-PK; IC50=220 nM) effectively sensitized HeLa cells to the topoisomerase II inhibitor etoposide in vitro. |
Databáze: |
MEDLINE |
Externí odkaz: |
|