Autor: |
Salva MZ; Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA., Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM, Finn EE, Nguyen QG, Blankinship MJ, Meuse L, Chamberlain JS, Hauschka SD |
Jazyk: |
angličtina |
Zdroj: |
Molecular therapy : the journal of the American Society of Gene Therapy [Mol Ther] 2007 Feb; Vol. 15 (2), pp. 320-9. |
DOI: |
10.1038/sj.mt.6300027 |
Abstrakt: |
Systemic delivery of recombinant adeno-associated virus (rAAV) 6 vectors mediates efficient transduction of the entire striated musculature, making this an attractive strategy for muscle gene therapy. However, owing to widespread transduction of non-muscle tissues, optimization of this method would benefit from the use of muscle-specific promoters. Most such promoters either lack high-level expression in certain muscle types or are too large for inclusion in rAAV vectors encoding microdystrophin. Here, we describe novel regulatory cassettes based on enhancer/promoter regions of murine muscle creatine kinase (CK) and alpha-myosin heavy-chain genes. The strongest cassette, MHCK7 (770 bp), directs high-level expression comparable to cytomegalovirus and Rous sarcoma virus promoters in fast and slow skeletal and cardiac muscle, and low expression in the liver, lung, and spleen following systemic rAAV6 delivery in mice. Compared with CK6, our previous best cassette, MHCK7 activity is approximately 400-, approximately 50-, and approximately 10-fold higher in cardiac, diaphragm, and soleus muscles, respectively. MHCK7 also directs strong microdystrophin expression in mdx muscles. While further study of immune responses to MHCK7-regulated microdystrophin expression is needed, this cassette is not active in dendritic cell lines. MHCK7 is thus a highly improved regulatory cassette for experimental studies of rAAV-mediated transduction of striated muscle. |
Databáze: |
MEDLINE |
Externí odkaz: |
|