Long-term operation and performance of cryogenic sapphire oscillators.

Autor: Tobar ME; Frequency Standards and Metrology Group, School of Physics, University of Western Australia, Crawley, WA 6009, Australia., Ivanov EN, Locke CR, Stanwix PL, Hartnett JG, Luiten AN, Warrington RB, Fisk PT, Lawn MA, Wouters MJ, Bize S, Santarelli G, Wolf P, Clairon A, Guillemot P
Jazyk: angličtina
Zdroj: IEEE transactions on ultrasonics, ferroelectrics, and frequency control [IEEE Trans Ultrason Ferroelectr Freq Control] 2006 Dec; Vol. 53 (12), pp. 2386-93.
DOI: 10.1109/tuffc.2006.187
Abstrakt: Cryogenic sapphire oscillators (CSO) developed at the University of Western Australia (UWA) have now been in operation around the world continuously for many years. Such oscillators, due to their excellent spectral purity are essential for interrogating atomic frequency standards at the limit of quantum projection noise; otherwise aliasing effects will dominate the frequency stability due to the periodic sampling between successive interrogations of the atomic transition. Other applications, which have attracted attention in recent years, include tests on fundamental principles of physics, such as tests of Lorentz invariance. This paper reports on the long-term operation and performance of such oscillators. We compare the long-term drift of some different CSOs. The drift rates turn out to be linear over many years and in the same direction. However, the magnitude seems to vary by more than one order of magnitude between the oscillators, ranging from 10(14) per day to a few parts in 10(13) per day.
Databáze: MEDLINE