Patient-specific dosimetry calculations using mathematic models of different anatomic sizes during therapy with 111In-DTPA-D-Phe1-octreotide infusions after catheterization of the hepatic artery.

Autor: Kontogeorgakos DK; Radiology Department, Nuclear Medicine Division, Aretaieion University Hospital, Athens, Greece., Dimitriou PA, Limouris GS, Vlahos LJ
Jazyk: angličtina
Zdroj: Journal of nuclear medicine : official publication, Society of Nuclear Medicine [J Nucl Med] 2006 Sep; Vol. 47 (9), pp. 1476-82.
Abstrakt: Unlabelled: The aim of the study was to provide dosimetric data on intrahepatic (111)In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe(1)-octreotide therapy for neuroendocrine tumors with overexpression of somatostatin receptors.
Methods: A dosimetric protocol was designed to estimate the absorbed dose to the tumor and healthy tissue in a course of 48 treatments for 12 patients, who received a mean activity of 5.4 +/- 1.7 GBq per session. The patient-specific dosimetry calculations, based on quantitative biplanar whole-body scintigrams, were performed using a Monte Carlo simulation program for 3 male and 3 female mathematic models of different anatomic sizes. Thirty minutes and 2, 6, 24, and 48 h after the radionuclide infusion, blood-sample data were collected for estimation of the red marrow radiation burden.
Results: The mean absorbed doses per administered activity (mGy/MBq) by the critical organs liver, spleen, kidneys, bladder wall, and bone marrow were 0.14 +/- 0.04, 1.4 +/- 0.6, 0.41 +/- 0.08, 0.094 +/- 0.013, and (3.5 +/- 0.8) x 10(-3), respectively; the tumor absorbed dose ranged from 2.2 to 19.6 mGy/MBq, strongly depending on the lesion size and tissue type.
Conclusion: The results of the present study quantitatively confirm the therapeutic efficacy of transhepatic administration; the tumor-to-healthy-tissue uptake ratio was enhanced, compared with the results after antecubital infusions. Planning of treatment was also optimized by use of the patient-specific dosimetric protocol.
Databáze: MEDLINE