Autor: |
Rafiee P; Dept. of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA. prafiee@mcw.edu, Theriot ME, Nelson VM, Heidemann J, Kanaa Y, Horowitz SA, Rogaczewski A, Johnson CP, Ali I, Shaker R, Binion DG |
Jazyk: |
angličtina |
Zdroj: |
American journal of physiology. Cell physiology [Am J Physiol Cell Physiol] 2006 Nov; Vol. 291 (5), pp. C931-45. Date of Electronic Publication: 2006 Jun 21. |
DOI: |
10.1152/ajpcell.00474.2005 |
Abstrakt: |
The heat shock response maintains cellular homeostasis following sublethal injury. Heat shock proteins (Hsps) are induced by thermal, oxyradical, and inflammatory stress, and they chaperone denatured intracellular proteins. Hsps also chaperone signal transduction proteins, modulating signaling cascades during repeated stress. Gastroesophageal reflux disease (GERD) affects 7% of the US population, and it is linked to prolonged esophageal acid exposure. GERD is characterized by enhanced and selective leukocyte recruitment from esophageal microvasculature, implying activation of microvascular endothelium. We investigated whether phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK regulate Hsp induction in primary cultures of human esophageal microvascular endothelial cells (HEMEC) in response to acid exposure (pH 4.5). Inhibitors of signaling pathways were used to define the contribution of PI3K/Akt and MAPKs in the heat shock response and following acid exposure. Acid significantly enhanced phosphorylation of Akt and MAPKs in HEMEC as well as inducing Hsp27 and Hsp70. The PI3K inhibitor LY-294002, and Akt small interfering RNA inhibited Akt activation and Hsp70 expression in HEMEC. The p38 MAPK inhibitor (SB-203580) and p38 MAPK siRNA blocked Hsp27 and Hsp70 mRNA induction, suggesting a role for MAPKs in the HEMEC heat shock response. Thus acidic pH exposure protects HEMEC through induction of Hsps and activation of MAPK and PI3 kinase pathway. Acidic exposure increased HEMEC expression of VCAM-1 protein, but not ICAM-1, which may contribute to selective leukocyte (i.e., eosinophil) recruitment in esophagitis. Activation of esophageal endothelial cells exposed to acidic refluxate may contribute to GERD in the setting of a disturbed mucosal squamous epithelial barrier (i.e., erosive esophagitis, peptic ulceration). |
Databáze: |
MEDLINE |
Externí odkaz: |
|