Autor: |
Trópia MJ; Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, 35.400-000 Ouro Preto, MG, Brazil., Cardoso AS, Tisi R, Fietto LG, Fietto JL, Martegani E, Castro IM, Brandão RL |
Jazyk: |
angličtina |
Zdroj: |
Biochemical and biophysical research communications [Biochem Biophys Res Commun] 2006 May 19; Vol. 343 (4), pp. 1234-43. Date of Electronic Publication: 2006 Mar 23. |
DOI: |
10.1016/j.bbrc.2006.03.078 |
Abstrakt: |
In this work, we show that glucose-induced activation of plasma membrane H(+)-ATPase from Saccharomyces cerevisiae is strongly dependent on calcium metabolism and that the glucose sensor Snf3p works in a parallel way with the G protein Gpa2p in the control of the pathway. The role of Snf3p is played by the Snf3p C-terminal tail, since in a strain with the deletion of the SNF3 gene, but also expressing a chimera protein formed by Hxt1p (a glucose transporter) and the Snf3p C-terminal tail, a normal glucose-activation process can be observed. We present evidences indicating that Snf3p would be the sensor for the internal signal (phosphorylated sugars) of this pathway that would connect calcium signaling and activation of the plasma membrane ATPase. We also show that Snf3p could be involved in the control of Pmc1p activity that would regulate the calcium availability in the cytosol. |
Databáze: |
MEDLINE |
Externí odkaz: |
|