Autor: |
van der Lelie D; Brookhaven National Laboratory, Biology Department, Building 463, Upton, NY 11973, USA. vdlelied@bnl.gov, Lesaulnier C, McCorkle S, Geets J, Taghavi S, Dunn J |
Jazyk: |
angličtina |
Zdroj: |
Applied and environmental microbiology [Appl Environ Microbiol] 2006 Mar; Vol. 72 (3), pp. 2092-101. |
DOI: |
10.1128/AEM.72.3.2092-2101.2006 |
Abstrakt: |
We developed single-point genome signature tags (SP-GSTs), a generally applicable, high-throughput sequencing-based method that targets specific genes to generate identifier tags from well-defined points in a genome. The technique yields identifier tags that can distinguish between closely related bacterial strains and allow for the identification of microbial community members. SP-GSTs are determined by three parameters: (i) the primer designed to recognize a conserved gene sequence, (ii) the anchoring enzyme recognition sequence, and (iii) the type IIS restriction enzyme which defines the tag length. We evaluated the SP-GST method in silico for bacterial identification using the genes rpoC, uvrB, and recA and the 16S rRNA gene. The best distinguishing tags were obtained with the restriction enzyme Csp6I upstream of the 16S rRNA gene, which discriminated all organisms in our data set to at least the genus level and most organisms to the species level. The method was successfully used to generate Csp6I-based tags upstream of the 16S rRNA gene and allowed us to discriminate between closely related strains of Bacillus cereus and Bacillus anthracis. This concept was further used successfully to identify the individual members of a defined microbial community. |
Databáze: |
MEDLINE |
Externí odkaz: |
|