A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling.

Autor: Van Aelst L; Laboratorium voor Cellulaire Biochemie, Katholieke Universiteit te Leuven, Leuven-Heverlee, Flanders, Belgium., Hohmann S, Zimmermann FK, Jans AW, Thevelein JM
Jazyk: angličtina
Zdroj: The EMBO journal [EMBO J] 1991 Aug; Vol. 10 (8), pp. 2095-104.
DOI: 10.1002/j.1460-2075.1991.tb07742.x
Abstrakt: Recently a new family of membrane proteins comprising the bovine lens fibre major intrinsic protein, soybean nodulin-26 protein and the Escherichia coli glycerol facilitator has been described [M.E. Baker and M.H. Saier, Jr (1990) Cell, 60, 185-186]. These proteins have six putative membrane spanning domains and one (probably intracellular) intermembrane fragment is particularly well conserved. We have identified a new member of this family in the yeast Saccharomyces cerevisiae. It also possesses the six transmembrane domains and the highly conserved intermembrane sequence. In contrast to the other three proteins which are all approximately 280 amino acids long, the yeast protein has an N-terminal extension of approximately 250 amino acids, which contains a string of 17 asparagine residues and a C-terminal extension of approximately 150 amino acids. The gene, which we called FPS1 (for fdp1 suppressor), suppresses in single copy the growth defect on fermentable sugars of the yeast fdp1 mutant but it is not allelic to FDP1. The deficiency of the fdp1 mutant in glucose-induced RAS-mediated cAMP signalling and in rapid glucose-induced changes in the activity of certain enzymes was not restored. Deletion of FPS1 does not cause any of the phenotypic deficiencies of the fdp1 mutant.
Databáze: MEDLINE